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1. INTRODUCTION

The absorption of infrared radiation by water vapor in
the atmosphere is of great interest since it plays a prominent
role in determining atmospheric transmission to solar or laser
radistion, and the heat balance of the lower atmosphere.(l)

The absorption of radiation near a line center requires
knowledge of the line strength S, and the collision-broadened
half width y. In the case of water vapor, very few accurate
measurements of half widths were available for comparison with
theoretical calculations until the early 1960's. With the
improvement in grating spectrometers, and the advent of tun-
able lasers for infrared spectroscopy, a larger data base(z'le)
is now available for study. One of the more interesting re-
cent advances has been the application of tunable lasers for
accurate determinations of collision-induced pressure

shifts.(lz-lu)

Although shift measurements for water vapor
are still sparse, it may be anticipated that this will be an
area of some continuing interest, particularly because it
furnishes a diagnostic tool for analyzing theoretical
calculations.

’zz,f*ﬁyThe purpose of this paper is to make specific compari-
so1s of two theoreti‘:al methods with available experimental
measurements of HJO widths and shifts for the case of N?»(or

Wof HQO—N{

half wiiths were carried out by Benedict and Kaplan (BK) using

> o

air) broadening. The earliest calculations




the Anderson-Tsao-Curnutte (ATC) theory of pressure broaden-
ing.fis’ge, Considering that only one accurate measurementee’
was available at the time their work was carried out, the
theoretical results, with one notable exception, have stood up
remarkably well.

In a compreh nsiye review article on microwave pressure

broadening, Birnbaum(21)

has made detailed comparisons of pre-
dictions from the Anderson theory with experimental results.
In the case of water vapor he finds the agreement less than
satisfactory. However, his indicyment of the theory appears
0 rest primarily on the following: (a) the theoretical half
widths are substantially smaller than those observed by

(8)

fanderson and Ginsburg, and (b) the value of the N, quadru-

pole moment, Q, = 2.46 x 10°%% esu-cm?, which was used by BK
to fit the microwave measurement of Becker and Autler,(2) is
much smaller than that obtained from other experimental
determinations.

Concerning both of these points, part of the discrepancy
is due to an error which BK made in correcting the Becker and
Autler measurement from air to N2 broadening. This error has

(22) by the authors, in

been discussed in a later publication
which they suggest that the results in Ref. (17) be taken as
valid for dry air, thle results for Nz-broadening should be
obtained by increasing the air widths by approximately 12%.

Our present Anderson theory calculations indicate that one

needs Q, = 3.00 x 10°*¢ esu-cm? (for pure N,) to fit the




Becker and Autler line. This is in excellent agreement with
the "best available" value, Q, = 3.04 x 1072¢, as recommended

by Stogryn and Stogryn.(zs)

Secondly, the results of Sanderson
and Ginsburg, for both N2 and self-broadening, appear to be
anomalously high compared to all other measurements, although
no new results appear to have been reported for precisely the
transitions which they studied.

Comparison of the (corrected) Benedict and Kaplan calcu-
lations with subsequent measurements seems to indicate, for
low J transitions, that the predictions for half widths (on
the average) tend to be smaller than the observed values by a
few percent. Some of this discrepancy could undoubtedly be
removed by placing less weight on the microwave line used to
calibrate the theory. Turthermore, the more recent high reso-

lution tunable laser measurements(lo-lS)

generally appear to
lead to narrower line widths than those ottained using grating
spectror.eters, for which somewhat uncertain slit-width correc-
tions are frequently required.

The "notable exception" referred to previously concerns
the discrepancy between the BK half widths for high J transi-
tions (J > 13) and subsequent tunable laser measurements for
such lines. As an example, the v, band transition 15, 0, 15
+ 16, 1, 16, which has been extensively studied experiment-

ally’(ll-l“)

exhibits a measured (Nz—broadened) half width of
0.0072 cm™ '/atm at T = 300°K. The BK calculated value is

0.032 cm '/atm, too large by a factor of 4.u.




The origin of the BK result is easy to elucidate. The
half width is given by Y = (nv/2nc)g, where c is the velocity
of light, v = mean relative thermal velocity, n = perturber
density at one atmosphere pressure and temperature T, and ¢ is
the collision cross section. For the high J transitions,
where the long-range dipole-quadrupole interaction becomes
weak (the collisions are very non-resonant), the cross section
is dominated by short-range repulsive interactions which are
approximated by classical hard sphere scattering according to

= % Kt

OHS min Here BK take bm'

in to represent essentially the

minimum "physically believable" value of the cut-off for the

long-range dipole-quadrupole interaction. For H O—Nz, BK

2
o
choose bmin = 3.2A, which is close to the kinetic-theory

(24) from P-V-T mea-

collision diameter, 3.1h2, as determined
surements on HZO—N2 mixtures. This immediately yields
Y = 0.032 cm !'/atm for T = 300°K.

The experimental results seem to indicate that the effec-
tive value of bmin for high J transitions must be substantially

o
smaller than the BK value, i.e. they suggest bmin = 1.5A. The

alternative (or perhaps equivalent) explanation would appear

to be that the true "potential™ at short separations is rather
mushy. We use the word "potential" here guardedly since it's
clear that the interaction at very close distances cannot be
rigorously formulated in terms of an interaction between

"molecules".




That the effective value of bmin for high J transitions

might be substantially less than the kinetic collision diam-
eter is not totally unreasonable because the determination of
the kinetic diameter is heavily weighted by contributions from
low J (highly occupied) states and it therefore contains
little information concerning high J collisions for which a
geometric hard-sphere diameter is more appropriate.

In view of these considerations, one might attempt to im-

o
prove agreement with experiment by taking b = 1.5A as an

min
empirical parameter and then using it in subsequent calcula-
tions. If one does this in the context of standard ATC
theory, one finds that the calculated width at high J is still
too large by a factor of about 1.4, due to the contribution of
the dipole-quadrupole interaction to the collision cross sec-

tion. In fact, letting b + 0 and determining the ATC cut-

min
off parameter, bo, by the self-contained Anderson prescription

(25) that the half width saturates (be-

Sz(bo) = 1, one finds
omes independent of b . ) at a value of 0.010 cm”!/atm.
tince the high J transitions are associated with very non-
resonant dipole-quadrupole collisions, the above difficulty
suggests that the ATC resonance functions f(k), F(k), where
k = 2ncbAE/v, decay too slowly for large values of the in-
elasticity AE.

In this paper, we shall compare the ATC theory for widths

(26)

and shifts with a theory developed by one of the present

authors (R.W.D.) based on quantum many-body theory. Hence-

forth we shall refer to Ref. (26) and I.




Although the theory developed in I was derived using
graphical many-body techniques, the differences w.th the
Anderson theory are of a more mundane nature. In particular,
to the .evel of analysis carried out in I, both theories cor-
respond to perturbation developments to second order in the
intermolecular interaction. Furthermore, although the theory
in I corresponds to a complete quantum-mechanical treatment,
noting the fact that molecules are heavy, actual quantum cor-
rections can be expected to be small. Also, for cases where
the lowest-order vertex corrections can be ignored in the
many-body treatment [corresponding to SZ(b)middle = 0 in the
ATC formalisml, the basic results derived in I can be obtained
much more simply using Fermi's "Golden Rule" for second-order
transition probabilities.

For practical purposes, the main differences between the
theory of I and the ATC approach are as follows: (a) the
treatment in I rigorously conserves momentum and energy in
the collision processes (in the ATC approach both the angular
deflection and change in kinetic energy of the colliding mole-
cules are ignored), and (b) the treatment in I includes a
Boltzmann average over the initial translational states (ATC
s mply use the mean relative thermal velocity). Although the
teatment of points (a), (b) in the ATC formalism is usually
considered to be adequate, the justification is far from clear
for collisions close to the hard sphere limit (where rela-

tively large angular deflections may occur), and/or for colli-




fions involving large changes in internal energy (large in-
e¢lasticities), where the concomitant change in kinetic ener-
gles may also be appreciable. As will be outlined briefly
l elow, one immediate consequence of the simultaneous con-
straints of energy and momentum conservation, coupled with a
Boltzmann distribution of velocities, is that off-resonance

(ollisions decay as a Gaussian. This is a much more rapid

cecay than obtains from the ATC formalism, and in general,
the shapes of the resonance functions in the two approaches
are quite different.

The quantum theory developed in I is made tractable
through the use of the spatial Fourier transform of the multi-
pole interactions. Henceforth, we shall refer to the theory
in I as the Quantum Fourier Transform (QFT) treatment. In
this method, one writes the various multipole interactions as

VIR) = —Ls f 3% wiq) TR | (1)

(2m)?3

where R = R, - R, is the molecular separation, with Ry» R, the |
center-of-mass coordinates. The advantage of eqn (1) for a |
quantum treatment is that the unperturbed wave functions gov-

erning translational motion are plane waves having the form
s ailia *R

WEl(El) = ? 2 =1, WE

operator ela'g

(52) = ¢%2°Ry.  Matrix elements of the
are thin trivial to calculate.

Subsequent reduction, using second-order perturbation
theory, leads to the result that the probability per unit

time of encountering a collision involving a total change in




internal energy AE, and with momentum transfer 4iq, is propor-

tional to

P(hg,AE) = [ d°k; [ d%k, pley ) pley )
=1 —2
« &(

€ -e, +te -€, +AE] . (2)
k-9 'k kytg Tk,

Here p(e ), p(s ) are the Boltzmann translational functions
2
for molecules 1, 2, with e, = %k 2/2m = P.?/2m, and simi-
k) o T ey

larly for ¢ It should be noted that the quantity —ig,

K.
where q is :ﬁe Fourier transform variable introduced in eqn
(1), is precisely the classical momentum transfer in the
collision process. The double integration in eqn (2) may be
cirried out directly using the method outlined in Appendix B
of Ref. (I); however, it is much simpler to introduce the
transformation to center-of-mass and relative coordinates via

k)

k+m/(m +m) K,

k,

-k + my/(m + my) K.

The Jacobian of the above transformation is unity, and the

transformation factorizes the double integral to give

_thKz B 2k2
P(#iq,AE) = [ d’K eV 2M [ d’k e " 2m
A4%keq n2q?
6[’ m + 2m + AE] [ (33.)

vhere Z = [2w/mlm2/(6h2)]’, B = 1/kgT, M = (my + m,), and
m = mlm2/M is the reduced mass. Evaluation is straightforward

and gives




T T T T T

——

2_2
P(g,AE) = == (EB)1/2 op (o BB ap + W2y . (g
Y2t n?q? 22q?2 .

As will be discussad further in Sec. 3, the term 12q%/2m is

generally negligible compared to the (quantum allowed) inelas-

ticity AE. Then one obtains

POiigAE) = mie (BB 3342 o [ BB (spy2y | (%) |
m ‘“ZqZ 2h2q2 “

i.e. the probability of a collision with inelasticity = AE is

Gaussian. The immediate consequence of the above result is

D ———

that highly non-resonant collisions, e.g. H20--N2 collisions
for high J levels of water vapor, are given much less weight
in the QFT theory. In particular, we shall show, down to
bmin = l.SX, that the QFT theory for the transition 15, 0, 15

+ 16, 1, 16 is very nearly equivalent to O 0.

dipole-quad.
For low J transitions, our results lead to essential agreement
with the Anderson theory, and this corroboration is not com-
pletely trivial in view of the very different resonance func-
tions in the two theories.

The outline of the remainder of the paper is as follows.
In Sec. 2, we review the ATC theory of pressure broadening
arising from multipole interactions. This is done to estab-
lish notation and also to present the generalization of the
theory to include second-order pressure shifts. The above
generalization of the ATC theory does not appear to bs well-

known, and in Sec. 2 and Appendix A we show that it e.sen-

tially amounts to replacing the ATC resonance functions f(k),




TR

F(k) by their Hilbert transforms. Then, in contrast to the
width calculation, the line shift is given by the difference
of the contributions in the initial and final radiative
states.

In Sec. 3, we show that a scaling transformation, from
the momentum transfer variable fiq to the impact parameter
variable b, converts the QFT theory to ¢ form very similar in
structure to the ATC equations. In particular, the essential
modification is to replace the ATC resonance functions f(k),
F(x), and associated Hilbert transforms f(k), F(k), by a modi-
fied set of resonance functions g(k), G(k), é(k), G(k).

In Sec. 4, we discuss the application of the two theories
to the specific problem of N, (or air) broadening of H,0
transitions. Details of the calculations are described and
tl 2 actual numerical results are presented in Appendix B
(widths for 110 measured transitions) and Appendix C (shifts
for eight measured transitions). The results are analyzed and
some specific recommendations for further experimental s .udies

are also suggested.

10
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2. REVIEW OF ATC THEORY WITH GENERALIZATION
TO INCLUDE SECOND-ORDER SHIFTS

The half width for a radiative transition i + f, is

given by (ecm™ '/atm)

SRUIC (R)
Yie © (ﬁ-c-) § D(J2) Gif, J2 5 (5)
2

where n = perturber density at one atmosphere pressure and
temperature T (n = n0273/T), ¢ = velocity of light, and v is
the m:an relative thermal velocity given by v = [SkBT/(ﬂm)]llz,
where m is the reduc=2d mass. Also, in eqn (5), p(J2) is the
Boltzmann factor for perturber state J2.
For simplicity in the treatment which follows, we shall

consider the case where the ATC term Sz(b) 0. For the

middle -
case cf particular interest in this paper, i.e. H20-N2, this
results because the diagonal matrix elements of the (permanent)
dipole moment operator of H20 vanish. Also, independently of
the particular case, it may be rigorously shown that the

second-order treatment of Sz(b) contributes nothing to

middle
the pressure shift. This is in agreement with the conclusion

reached in Ref. (I), i.e. that the lowest-order vertex correc-
tions in the QFT theory make no contribution to the shift.

For ogR) » the ATC theory yields
1f,J2

(R)

= m (b + [ 2bdb s k)
b

g
if,Jd
0 2

(b))l , (6a)

or

11




(R)

(R) a 2
with
1L DI T 1<il]o, [1it>12]<d,]]0,] 1985 |2£Ck.)
£ 90 Pl LSale e Ty RIS P il 21 =9k 1% i
2
+ Jgf' |<f||01||f'>|2|<J2||02||J5>|2f(kf)}, (7a)
2

"

(R) - cn . = 2 2

Sif,q.Pg) (ﬁ—_—zvzb“) {Jgi' [<illog [1i*>|*|<d, |10, ] |d3>]2F (K, )
0 2

+

sz. [<€]fog | 1£1>]2]<d,| [0, |34>|2FCkegd}.  (7b)
2

In the above equations, we have denoted various reduced matrix
elements of the dipole or quadrupole moment operators, and

the indices n = 4%, 6, 8 represent the dipole-dipole, dipole-
quadrupole, and quadrupole-quadrupole cases, respectively.

The functions f(k), F(k) are the well-known resonance func-

tions discussed and tabulated by Tsao and Curnutte,(20) and
_ 2mcb
2 2
21rcb0
kio = v (Ei - Ei' + EJ2 - EJé) ’ (8b)

where the energies are in units cm !, and similar formulas
apply to kf, kfo' If we use the Tsao-Curnutte definition of
the quadrupole moment reduced matrix element, the numerical

coefficients cg are given by

cy = (4/9) (d-d case), cg = (4/45) (d-q case), cg = (1/25)

(q-q case). (9)




It should be noted that the definition of Benedict and kaplan
for the quadrupole moment agrees with the Tsao and Curnutte
definition, but this definition is twice the value used by

Birnbaum,(zl) (27) (23) e

Buckingham, Stogryn and Stogryn, d
the definition employed* in Ref. (I). Finally, the above
equations assume use of Anderson's "approximation number two"
for determination of the minimum impact parameter by i.e. b,
is to be determined as the solution of the implicit equation

(R) 5 '
sif,Jz(bO) = L (10)

We turn next to pressure shifts in the Anderson theory.
In the original ATC formulation, a first-order shift contribu-~
tion is calculated, but the second-order shift is eliminated
through an approximation which neglects non-commutivity of
certain quantum mechanical operators. As pointed out in I,
the first-order shift due to multipole interactions rigorously
vanishes. Although "effective" interactions such as the in-
duction and dispersion forces can contribute in first order,

(18)

it is well-known that these forces are actually approxi-

mations to second-order (or higher-order) interactions.

t The statement following eqn (5.17) in Ref. (26) contains
a typographical error and should read

>
Q| = g epe [fﬁ(b);.z. - fB(b);.x.] :

For a charge distribution possessing an axis (z') of suf-
ficient symmetry, this agrees with the definition used by

Birnbaum.(zl)

13
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A generalization of the ATC theory to include second-

order pressure shifts has been derived by Herman(ze)

for the
special case of induction-dispersion forces (for the interac-
tion of HCL with inert gas molecules). In Appendix A, we de-
rive the general formulas for second-order shifts using

Anderson's original formalism. Rather similar formal expres-
sions can also be obtained as limiting cases from the theory

(29)

(eveloped by Murphy and Boggs, and a related theory re-

cently given by Mehrotra and Boggs.(30)

We should also men-~
tion, in this connection, that the theory of Murphy and Boggs
is similar to the QFT theory in that a Boltzmann average over
the initial translational states is included. However, com-
putationally, when used in conjunction with the classical

path method, it appears to be more cumbersome, since the double

integral over velocity and impact parameter must be performed

numerically in the Murphy and Boggs formalism.
The results for second-order shifts from the ATC theory
:an be expressed in a form very similar to the width formulas.

‘he shift (ecm ! ’'atm) is given by

Aygp = (B § p(Jd,) ogfdz , (11)
2
where
: og:% = Zo 2bdb sngz(b) g (12a)
= bg Sﬁ-)(bo) s (12b)
14




with
(I n
= (D : i1y ]2 15| 2F
sif,J2(b) Shzvzbn) {Jgi' |<1||01||1 >| |<J2||02||J2>| £0x;)
- Zf' [<€llog [[£1>[2[<ayll0, (38> |2ECke)}s  (13a)
o
(1) °n
n . . 2 25
Slf’Jz(bo) = E;;;;;H) {Jzi. [<iffo [1it>] l<d,l10,15>] F(k; )

0 2

" he, ISEHIOL > 121<0, 110,113 5> | 2FCkgg) Y, (13D
2

and ki’ kiO’ kf, ka have the same definitions as given
previously.

In eqn (13), f(k) and F(k) are simply the Hilbert trans-

forms(sl) of f(k) and F(k), respectively, i.e.

foo = B2y Edl (14a)

Foo = 22 55%%%%5l ¢ (14b)

It is also to be understood in eqn (14) that f(k'), F(k') are
to be taken as even functions of k', i.e. f(k') = f(|k']|),

and similarly for F(k').

Some useful formulas connecting the various functions

should also be noted, viz.

F(k) = 2k"72 f kodkl kD) (15a)
kK k'
F(k) = k™2 ELQELELKLl (15b)
ko k!
15




Equations (15) are valid for the case k > 0. For k < 0,
F(k) = F(|k|) while F(k) = - F(|k|), i.e. f(k), F(k) are to be
taken as even functions of k, while f(k) and F(k) are to be
taken as odd functions of k. That eqn (15b) is consistent
with eqn (1l4a), (1l4b), (1l5a) can be seen as follows. We take
the derivative of eqn (15a) and obtain

kF'(k) = (n-2) F(k) - 2f(k) . (16)
Next, we take the Hilbert transform of both sides of this

equation, which gives

= (n-2) F(k) - 2f(Kk) . (17)

Pr ? K'F'(k')dk'
R k'-k

In he numerator of the left-hand-side, we write k' = (k'-k) + k.

Thi. gives

P " Pr T F'(k")dk'
;[F()-F(—)]"’k"!—FrT—

= (n=-2) F(k) - 2f(k) . (18)

The first term on the left-hand-side vanishes, and, by a well-

known theorem for Hilbert transforms,(3l)

d,
dk

the second term

equals kF'(k), where F'(k) = f(k), which gives

kF'(x) = (n-2) F() - 2f(x) . (19)
Then, by analogy with eqn (16), and noting that F(=) = 0, we
immediately obtain eqn (15b).
The ATC resonance functions f(k), F(k) are sufficiently
complicated that it appears to be necessary to obtain their
f Hilbert transforms numerically. Such results for the dipole-

quadrupole case are presented in Sec. 4. Since the Hilbert
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transforms are odd, they vanish at k = 0. For large k, one

can easily see that they must have the asymptotic form

f(x) = - B/k (k » =) , : (20a)

F(k) = - By/k (k » =) , (20Db)
where B_ = L [ f(k)dk, B, = T [ F(k)dk. From eqn (19) one
then obtains the result

B, = (=5e) 8 (21)

L n-1 g ?

which is a useful relation for checking the numerical
calculations.

One final point to note is that we have not included the
shift contribution in the determination of bO' In Herman's
paper,(28) a cut-off prescription is recommended which appears

to be essentially equivalent to

(R)

(1)
Sif,J2

(by) + [sif’Jz(bo)l = 1.

We will not use this prescription for the following reasons:
(a) the theoretical justification is not completely obvious,
(b) we want to keep the correspondence with the earlier calcu-
‘ations of BK as straightforward as possible, (c) the shift
contribution is generally small compared to the width contri-
bution, so, for most cases, one expects rather small correc-
tions if the shift were included in the determination of b,.
The formulas in this Section provide a complete descrip-
tion of the ATC theory of widths and shifts, except for the

introduction of the parameter bpin employed in the earlier

L7




calculations of BK. This minimum "physically believable"
value of the cut-cff is used as follows: if bmin < b0 [as

determined by eqn (10)] use b, in the calculation, otherwise

use bmin in place of bo. For the H20-N2 system, the depend-

ence of the results on the choice of bmi is discussed in

n
Sec. 4.
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3. REDUCTION OF THE QFT THEORY TO ATC FORM

In Ref. (I), the QFT theory of second-order pressure
chifts was analyzed in detail. For the case where the lowest-
order vertex corrections vanish [corresponding to S2(b)midd1e =
in the ATC formalism], the lineshape function (u' + u) can be

wrritten as

3 a
d’k p(eE)(I‘uh + ru'k)

£f ,. (hw) = f . (22)
H M a a 2 2
(EHE - EH'E - hw)* + (I‘uE + )

Here we are using the notation of Ref. (I). We will indicate

the correspondence with the more familiar ATC notaticn pre-

sently. In order to make such a correspondence, it is neces-
sary (also convenient) to ignore the inhomogeneous broadening
implied by eqn (22), and to replace the lineshape function by

the simple Lorentzian

f , (hw) = 5 (23)
a a
gy (eu =iy =l - 4w)? + r?
where
P2 <Dy + T, >ave, (24)
BF<b, =B, >ave . (25) ;

Here <0> ave = [ d’k p(ei) 0y implies an average over transla-
tional states of the abs;fbi;g molecule, with p(ei) the Boltz-
mann factor. With the above approximations, T is_khe half

width of the Lorentzian and -A is the shift. The object A is

precisely the quantity calculated for multipole interactions

19




in Ref. (I). Since the real and imaginary parts of the self-
energy (Auh and ruk respectively) are connected by Kramers-
Kronig relations, It is easy to see that the only essential
modification necessary to obtain T' is the replacement of the
principal value denominators in equations such as (5.10),
(5.19), (B.1) of Ref. (I) by m &§(energy denominator). Thus
for example, eqn (5.19) of I gets replaced in the width calcu-

lation by the resonance function

1/2 @
T_(AE ) = =2 -Q’ﬂ—) [ dE' exp[-BmE'?/2h%q?]
q H V2T | H12q2 e
S(E' - aE, - 1a%, (26)
T o= A u b 2m s 6
or
/
LA c_ _Bm h2g?y2
rq(AEu) =\3 23 expl oniq? (AEu * St d (27)

The above results is essentially identical to eqn (3b) of
the present paper. As mentioned in the Introduction, the

term t12q?/2m, involving the square of the momentum transfer,
a

is usually negligible compared to the inelasticity AEu = (eu

1

- eﬁ) + (e? - es ). The argument for this is the following.
1 2

In the ATC theory the multipole interactions become divergent
as b » 0 and must be cut off at some minimum impact parameter
bmin' Similarly, in the QFT approach, the multipole interac-
tions become divergent at large q. Since q and b form essen-

tially a Fourier pair, one must cut-off the multipole inter-

actions roughly according to  T— l/bmin. Thus Ghzqz/Zm)mix
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(o] -
= (?/2mk2. ). Taking b ~ 3A, m = 1.83 x 10 2? grams as

nin min
the reduced mass of H,0-N,, and converting the energy to cm !,
yields 0ﬁ2q2/2m)max = .2 em”}, This value is totally negli-
gible compared to typical (quantum allowed) inelasticities,
AEu, for HZO-N2 collisions. It might be noted, if the term
(12q2/2m) is retailed in eqn (27), that the resulting theory
for widths is formally convergent at large q (the calculation
of shifts still leads to a high q divergence). However, this
convergence is spurious since it occurs at values of q where
the multipole interaction is totally unphysical.

From the above argument, we henceforth replace eqn (27)

by the Gaussian formula

/2
expl[- CAE. )*]. (28)

2&1q Lo

P (AE ) V?

11
_Bm |
n2q?)
Similarly, if we ignore (112q?/2m) in comparison to AEu in egn

(5.22) of I, then eqn (5.20), (5.21) of I lead to the fol-

1 wing resonance function for the calculation of shifts:

/2
2 ( il -
i G T Bm(AE ) 2m2q?2 u .2
Yy (AE ) = | =—— e 2 2 e dt. (29)
q U ,hzqz 2t q 0

The functions rq(AEu) and Yq(AEu) are simply Hilbert pairs,

in particularf
I' (E)AE
Pr
E 2 - =
Y aE)) - {m E-3E,
+ A simple derivation of the Hilbert transform of a

Gaussian may be found in Ref. (32); see also Ref. (33).
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Next one has to integrate the contribution of these func-
tions ove~ g. In view of eqn (5.11) of I, the shift calcula-

tion involves

(n) 2 1. 3 n 2
L "(AE) = ~ [ d’°q q" g(q) Yq(4E) (31a)
(2nw) 4
I - n-2 _=2qr
=8 [ dq q e e ¥ CAE ) . (31b)
0 e

Similarly, for the linewidth one needs

(n) = 1 3 n 2
| MTU(AE ) Py [ d®q q" g(q) rq(AEu) > (32a)
§ T 2 =2
28 [ dg q ¢ e “Weo r (AE ) . (32b)
0 q H

The meaning of the index n is the same as in Sec. 2, i.e.

n==u4, 6, 8 for the dipole-dipole, dipole-quad., and quad.-

quad. cases respectively.

In eqn (31b), (32b) we have also retained the phenomeno-
logical convergence factor e 9Fc, which was introduced in Ty
where ro = by ;- We will now eliminate this parameter in
favor of a cut-off procedure more closely related to Anderson's
method. To do this, we introduce the scaling transformation

q = a/b , (33)
where, at this point, a is an arbitrary (dimensionless) con-
stant, and the length b becomes the new variable of integra-
tion. It is also useful to eliminate B in the previous equa-
tions by using

B = L/kpT = 8/(wmv?) , (34)
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where v is the mean relative thermal velocity. This gives,

with AEu =-ﬂﬁmu,

M(n)(Am i = (%g) un-2 f bdb e-2arc/b
¥ 0 b"
bAw
” 4 2
expl- = (2], (35)
Ly /iy 0b
bAw
J: (=)
Y bAw . m av £2
+ expl- = (‘EVE) ] é e dt . (36)
If the factor e'zm‘c/b were not present, then, as in the

Anderson theory, the above expressions are divergent at the
lower limit b + 0. Here we choose to drop the phenomenological
convergence factor, and to replace the lower limit simply by
bo, where, with some appropriate choice of the scaling param-
eter a, we regard b0 as an effective minimum impact parameter,
to be determined by Anderson's self-contained cut-off proced-

ure. Thus, in eqn (35), (36), we let

7 bdb _- /b . 7 bd
fir e vl O

0b b0 b

. (37)

Finally, it is clear that the above procedure only defines an
approximation to the long-range contribution to the cross
section, OL.R.' In the spirit of the Anderson cut-off method,
this is to be augmented by a short-range contribution,

Og.R. ° nbs, corresponding to classical hard sphere scattering.
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The remainder of the reduction of the QFT theory to ATC
form is now completely straightforward and the details will
not be presented here. Some helpful correspondence between

the notation in the two theories is as follows:

Ref. (I) + ATC Notation

ju » £

ju! e SR |

jul -+ i' or £

The following relation involving reduced matrix elements is

also useful in the reduction:

]
[<allof]ar>]* = (Grp™ |<at{lol|a>]*, (38)

and it should be remembered that the definition of quadrupole
moment employed in Ref. (I) is one-half the BK definition.
The final result of this analysis is that the QFT theory
can be generated from the ATC equations with the following
simple replacements of numerical constants and resonance

functions:
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ATC + QFT
cr £(k) + c! % . g(k)
et F(k) » et 2 a"2 g(x)
er E) » et 2 a™? ga) #
o F(k) ~ e} % ™2 &(x)
. (39)

In the above correspondence, the constants c;, for n = 4, 6, 8
were previously given in eqn (9). Using the BK definition of
quadrupole moment, the corresponding coefficients in the QFT
theory are

c, = %7 (d-d case), cé = 1/900 (d-q case), cé = 1/63000

(q-q case). (40)

The resonance functions g(k), G(k) in the QFT theory are

given by
- 4 k?
g(k) = exp {- = ;; 3 (41)
n-2 7 k'dk'
G(k) = 2k § = gx") (kx > 0) . (42)
k (k')

The functions g(k), G(k) are simply the Hilbert transforms of

g(k), G(k) and are given explicitly by

2_k
a
2 /n 2
g0 = - Lexpl- 2R3 1 et ar, (43)
/n a? 0
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8(x) = ™2 y kdk® 20y (k > 0)
k (xk9)?

N (44)
As in the ATC formalism, g(k), G(k) are to be taken as even
functions of k, while E(k), a(k) are odd. It should be
noted that eqn (42), (44) are completely analogous to eqn

(15a), (15b) of Sec. 2.
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4. APPLICATION OF THE THEORIES TO H2O BROADENED BY N,

The original calculations of Benedict and Kaplan were
carried out for pure rotational. transitions and ignoring
vibrational-rotational couplini;. We have attempted some re-
finement of the calculations by utilizing programs developed
a: Air Force Geophysics Laboractory which treat the vibrational-

(34) asymmetric rotor

rotational coupling in H20 via the Watson
Hamiltonian. 1In the case of tne ground and v, vibrational

states, the present calculations are based on the best avail-

able constants for the Watson lamiltonian as determined by a

least-squares fit. In the cas: of transitions involving the

UK v3, and 2v2 states, becaus: of the existence of accidental
degeneracies between these states, we have simply performed

calculations using ground-state energy levels and eigenvec- i
tors. It is doubtful that this approximation introduces large
errors in the calculations of half-widths, however, it is cer-
tainly inadequate for the calculation of pressure shifts. On

the other hand, at present only v, experimental shifts are

available for analysis.

In our Anderson theory calculations, we have proceeded
as BK did by choosing Q,> the nitrogen quadrupole moment, to
force a fit to the 5, 2, 3 + 6, 1, 6 microwave line studied

(2)

by Becker and Autler. The experimental half-width is

.087 cm '/atm at 318°K in air. From the tunable laser mea-

surements in Ref. (14) for low J transitions, one infers an
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air to N2 correction of YN

: = 1.1045 v,;,.» and applied to the
Becker and Autler result yields yy = 0.0961 cm '/atm. When
2

the difference in temperatures is taken into account, this is

in good agreement with the result obtained by Liebe and
(3)

Dillon for the same transition (yy = 0.104 em !'/atm at
2

300°K). For the H,0 (ground state) permanent dipole moment

d,, we have taken the valuefit) d, = 1.85 x 107'® esu-cm,

which is about 1% smaller than the BK choice. We then obtain
a fit to the Becker and Autler line if Q, = 3.00 x 10”%¢ esu-cm?.
As mentioned in the Introduction, this is in excellent agree-
ment with the "best available" value, Q, = 3.04 x 10°2% esu-cm?,
as recommended by Stogryn and Stogryn.(zs)

In the notation introduced by BK, egn (7a) for the dipole-

quadrupole case may be written as

A
(R) _ DQ. ¢ 37
ifg, () = (= (], DU QUL £ky)
+ f;J' D(f,£') QUI,,0)) flke)} , (45)
2
wheref
ol |
- l 2 1/ 6 |
AQ-[—-S- =221 ‘ (46) |
In the above notation, the corresponding formulas (7b), (13a),
I
(13b) for S(%)J (b ), sii)J (b), and S(f)J (b ) are obvious.
p.
g
t Ejuation (4a) in Ref. (17) contains a typographical error.
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Turning now to the QFT theory, the correspondence given

in eqn (39) for the dipole~quadrupole case is equivalent to

'
6 6 ot
A £U) + Ap (I57) gk

% (A6Q)5 g(x) , ; (47)

where AﬂQ -~ ADQ [a“/(lOn)]’/G, and obvious similar replace-
ments for the other resonance functions.

In applying the QFT theory, one is now confronted with
the problem that the scealing parameter a, which was introduced
in order to obtain a cut-off procedure similar to Anderson's,
is not given apriori, and therefore a ends up as an additional
undetermined’ quantity. Two reasonable methods for fixing a
are given below.

We note from eqn (41) and (47) that the two theories may
be made identical for purely resonant collision (k « AE + 0)

by choosing

a = (1om'* = 2.36749 . (48)
A plot of the various dipole-quadrupole resonance functions
for this choice ot a is illustrated in Fig. 1. It is obvious
from Fig. 1 that the above choice of a will require a much

larger value of Q2 in order to fit the Becker and Autler line.

17 From eqn (35), (36), it is obvious on making the change
of variables of integration, b = ab', db = adb', that the
expressions for M(n)(Aw,), L(n)(Amu) are actually inde-
pendent of a. However, when the transition to the
Anderson cut-off procedure is made via eqn (37), where
bg is to be interpreted as an effective minimum impact
parameter, the results are no longer independent of a.
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Again taking dl = 1.85 Debye as the HZO dipole moment, we ob-
tain a fit if Q, = 4.61 x 1072% esu-cm?. This value seems
far too high, however, we will retain it for purposes of com-
parison. We shall refer to the resul s derived from the
above choice of parameters as QFT I.

A second method of proceeding is to choose the "best

aviilable" value,(23)

Q, = 3.04 X 10 %% esu-cm?, and then to
fix a from the calibration line. This yields a = 2.79, which
is 18% higher than the previous choice¢. The results derived
from this second set of parameters will be denoted by QFT II.
Our final results indicate that the difference between
line widths as calculated using the two sets of parameters is
nevaer very great. This has the positive implication that the

calculated widths are fairly insensitive to the combined

choice for (Q2, a) over a reasonable range, however, it also

implies to Q2 cannot be accurately determined in the present
theory. As pointed out in the Introduction, it appears that
the overall rms error between theory «nd experiment at low J
(for both the ATC and QFT theories) could be reduced by placing
somewhat less weight on the Becker and Autler transition.
However, in this paper we are more interested in comparing
trends than obtaining a best-fit to the available data. The
latter procedure would surely require great selectivity,

owning to the difference and accuracy of the experimental pro-

cedures used to gather the data.




To complete the discussion of the calculational proced-
ures, we make the following remarks. Since most of the ex-
perimental results are confined to the temperature range 295-
300°K, we have performed all calculations at 297°K. We have
also carried out the calculations for pure Ny using 30 occu-
pied N2 levels, and the rotational constant for N2 was chosen
as 2.0 cm™!. It should also be noted that many of the quoted
experimental results are for air rather thﬁn pure nitrogen.
We have not attempted to correct for this, however, from
Ref. (14), one expects nitrogen-broadened widths to be approx-
imately 10% higher for low J transitions. For very high J,
this is probably no longer true since the scattering cross
section is dominated by oyg = "b;in' Finally, in the case of
the QFT calculations, it may be noted from eqn (41)-(44) that
the resonance functions g(k), G(k), g(k), &(k) are functions
only of the parameter

K = k/a = 2wcbAE/av . (49)
This results in a considerable computational simplification
because the resonance functions can be tabulated once and for
all as a function of K, and then used according to eqn (49).
The remaining dependence on & can be lumped into the coupling
constant AﬁQ as indicated in eqn (47).

The results of our calculations for half-widths are pre-
sented in Appendix B where we have divided the transitions
into three distinct groups; Group Bl lines with negligible

o
sensitivity to letting Bata © 3.2A, Group B2 lines with some




weak sensitivity to the reduction of bmin’ and Group B3 lines
which are strongly dependent on the choice 5} bmin‘

For the low and intermediate J lines listed in Group Bl,
we note that the QFT and ATC calculations lead to substantial
agreement, the general trend being that the QFT widths are
smaller than the ATC widths, with maximum differences of order
5%. We also note that the QFT I results are consistently

smaller than the QFT II results, however, the differences

are typically of order 1%. Therefore, the distinction between

QFT I and QFT II will not be belabored in the discussion
whi:h follows. Although the overall comparison of the theo-
retical and experimental results is not completely satisfac- i
tory, we note that most of the large discrepancies are associ-
ated with the measurements of Refs. (8), (9), where the ob-
served widths are consistently high compared to the theoreti-
cal values. It should be noted that the results in Ref. (9)
are for air-broadening, while the calculated widths refer to
Nz-broadening.

The Group B2 lines of intermediate J-values (8 < J < 13)

exhibit the same general trends, except that they show some

sensitivity to the reduction of bmin below the BK value of
3.208. The QFT results exhibit the greater sensitivity, due
to the Gaussian decay of the QFT resonance functions g(k),
G(k) at large inelasticities. For these transitions, we note,
is reduced to a value of 1.503, that the theoretical

if bmin

widths are in poor agreement with the observed values of
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Ref. (9); however, they are in reasonably good agreement with
the measurements of Refs. (15), (16). Of these measurements,

(1) is a tunable laser observation.

only one
The Group B3 lines, involving high J values, are seen to

be extremely sensitive to the choice of bmin' In Fig. 2, we

present a plot of half-width vs. b_.

-_ for the transition

15, 0, 15 + 16, 1, 16. It is seen, if one is willing to
allow values of bmin as small as l.SR, that the QFT theory
can account for the narrow measured width. The ATC theory,
on the other hand, saturates at a value for the half-width
of 0.010 cm™!/atm.

It seems clear that no theory such as Anderson's (or the
QFT theory as used here), which treats the width as a sum of
two independent contributions from a long and short-range
part, and which further approximates the short-range part by
classical hard-sphere scattering, can provide much further
theoretical understanding of the narrow lines at high J. The
argument for this is simple. In the present approaches, the
scattering cross section may be written

+ 0 = b2 + (50)

ks L.R. min

Bk, Tty
where, in the case of interest here, IL.R. arises from the
dipole-quadrupole interation.

We imagine that it were possible to calculate Ol R.
exactly or to any required high order in perturbation theory.

Now °L.R is necessarily positive or zero. The best one can

hope for is that an exact calculation (for high J transitions)
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would give ¢, o = 0. In this case, 0 = mb?

R in® The result of

such a calculation is also indicated in Fig. 2. It is seen

that the QFT result is virtually identical to o 0 (maxi-

L.R.

o]
mum difference of order 8%) down to bmin = 1.50A.

It appears that there are essentially two paths toward

further progress. The first approach is simply to accept

Q
bmin = 1.50A as an empirical fact, and then to use it in all

R T o S R T P A BRI Se

Q
future calculations (in place of BK's value bmin = 3.2A).
Our results for the Group B3 transitions indicate that this 3
should work fairly well, and the QFT theory appears to produce 1

the more satisfactory results. The one rather glaring excep-

tion to this is the vy transition 13 0, 13 > 12, 1, 12 mea-
(16)

sured by Toth. Here the ATC theory produces distinctly
better agreement with experiment. However, the fact that both

o]
the ATC and QFT widths are too small at bmin = 1.50A suggests

that part of the difficulty may be due to the use of ground 1
state energies and eigenvectors in the theoretical calcula- j
tions. It would seem that the most crucial question is how |
well the theories will work (with Dein = 1.502) for lines of
intermediate J values. As stated previously, our present re-
sults for such (Group B2) transitions are rather inconclusive
in this regard.

The second (obviously more difficult) approach is to try
to formulate the detailed interaction which takes place at
small intermolecular separations. Such a theory must account,

at least qualitatively, for the strong repulsive exchange in-
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teractions which occur when the electron clouds overlap, and
must yield the dipole-quadrupole interaction at larger sepa-
rations. Unless a "potential" to describe such effects can
be formulated semi-rigorously from first principles, we visu-
alize that the results of such a theory would largely be a
? reflection of whatever parameters were initially built in to
specify the interaction.
A final point to be made in this connection is that the
QFT result given in eqn (4), i.e. the probability for a colli-
sion involving inelasticity, AE, is Gaussian, is very general.
In particular, it assumes only conservation of energy and mo-
mentum, and a Boltzmann distribution of velocities. It can

be applied to any potential (phenomenological or otherwise)

P

for which the Fourier transform exists, and which can be

treated using second-order perturbation theory. Although both

of these assumptions run into difficulty at very close molec-
ular separations, the implication of weak collisions for high
J states seems valid.

The results o our calculations of pressure shifts for
measured v, transi ions are presented in Appendix C. The
theoretical calculations (from both theories) show no relation
to the experimental results for the two high J lines
16, 1, 15 - 16, 0, 16 and 14, 1, 14 » 15, 0, 15. No explana-
tion for this difficulty is presently available, although one
possible interpretation is that the shift for these high J
transitions cannot be correctly calculated without treating

the short-range interactions in detail.
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For the remaining low J transitions, the QFT theory gives

—

the correct sign of the shift for all six lines, and yields
numerically accurate values for four of these transitions.

It is also interesting to "interpret" the frequency shift in
terms of the individual level shifts of the lower and upper
radiative states. Such an interpretation is not completely
unambiguous since the determination of bo is a joint property
of the initial and final states i, f. The results of such an
interrretation are shown schematically in Fig. 3 for the three

Eransitions 8, 3, 5 = 95 4, B85 6, 4, 2 + 7, 5, 3 and 5, 0, 5

+ 6, 3, 4. The results for the other three low J transitions
o Appendix C are essentially identical to the situation de-
picted in Fig. 3b. From Fig. 3, we note the following re-
sults: (1) in all cases the signs of the individual level
shifts are identical from the ATC and QFT calculations, (2) in
most cases the shift of the lower (ground) state level is
larger than the upoer (v2) state shift, (3) only in the case
of the 5, 0, 5 state is the level shift negative. Regarding
point (2), the ATC result for the transition 8, 3, 5 = 9, 4, 6
is anomalous in that the upper state shift is greater than the
lower state shift and this leads to a positive frequency
shift.

Concerning the sign of the level shifts, it is easy to
see that the contribution to the shift of state i from a
collision i + i', J, = J5 will be positive (negative) when

kKig * (2ﬂcb0/v) (Ei—Ei,+EJ2-EJ5) is positive (negative). The
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dependence on the perturber states J2, Jé makes a complete
analysis difficult, however, taking into account that the ro-
tational constant for N2 is small, kio will tend to b2 posi-
tiv: (negative) when (Ei - Ei.) is positive (negative). We
then consider the state i = (5, 0, 5) where the theory leads
to a negative level shift. This state has strong allowed
dipole transition to the states i' = (4, 1, 4), (5, 1, u4),
(6, 3, u), (6, 1, 6), with the dipole line strengths given,
respectively, by D(i,i') = 0.3554, 0.1774, 0.0113, 0.4524.

The corresponding energy differences are (Ei-Ei,) = 100.51,

-74.11, -323.64, -121.91 cm !. We note that (E;-E;,) is nega-
tive for three of these transitions, and, in particular, is
negative for the strongest transition. Although such arguments:
are rough, they may be useful for a qualitative understanding

of the level shifts.

A final quantity of interest, e.g. to meteorological ap-
plications, is the temperature dependence of the half width.
Because, to our knowledge, no accurate experimental determin-
ations of this dependence exist, it seemed unwarranted to
undertake an extensive theoretical investigation of this ques-
tion. However, of some interest here is the comparison be-
tween the predictions from the ATC and QFT approaches.

(17)

In the case of the ATC theory, it is generally found

that a power law of the form

YT /¥(Ty) = ('ron-)"‘ 3 (51)

adequately describes the temperature dependence. We have
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also found this to be true in the QFT theory, at least for
low J transitions (where the¢ choice of boin Plays no role).
Results for the exponent, m, for four lines of relatively low
J are shown below in Table I. We see from the results in
Table I that the two theories are fairly consistent, with
maximum differences of order 8%. The results at low J are

i also roughly consistent with an effective cross section which

is temperature independent, i.e. the prefactor nv in eqn (5)

1/2

is proportional to (T)~ 3 hence, an average effective cross

section which is temperature independent would yield m = 0.50.
At high J, e.g. the v, transition 15, 0, 15 = 16, 15 16,

we find a complicated temperature dependence, which also de-

pends sensitively on the choice of bmi . For example, if we

n

(o]
choase bmin = 1.50A for the above transition, we find drastic

deviations from the power law of eqn (51); the temperature

dependence of y(T) is much smaller than at low J, and the
Ander:son theory leads to a positive temperature dependence
[corresponding to m being negative in eqn (51)1 while the QFT
theory predicts a negative temperature dependence. An experi-
nental investigation of this question would be interesting
but probably extremely difficult due to the narrow line width

and relatively slow temperature dependence (in going from

225°K to 350°K the ATC and QFT theories predict a change in
y of +16% and -11% respectively).
in conclusion, we offer the following appeal for further

experimental studies:




Table I. m eqn (51).

Transition BK (Presen:Tgesults)* QFT I | QFT 11
5,2,3 +» 6,1,6 0.626 0.629 0.621 0.636
2;2,0 » 3,1,3 0.649 0.659 0.664 0.673
6,4,2 + 7,5,37 | 0.408 0.466 0.425 | 0.454
L E,0 + 2201 0.616 0.620 0.578 0.602
* Present results derived for 225 < T < 350°K; the BK

results were derived for 200 < T < 300°K.

: v, transition; all others are pure rotational transitions.
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(a) It would be valuable to use high resolution tunable
lasers to remeasure (in the 12 band) some of the low J transi-
tions studied in Refs. (8), (9). The Sanderson and Ginsberg
measurement of the 1, 1, 0 » 2, 2, 1 transition remains as a
particularly acute embarrassment to the theories. For the
low J transitions, we have generally found good agreement be-
tween the results from the ATC and QFT calculations, and
these are lines for which the long-r&nge dipole-quadrupole
interaction is dominant, with very weak dependence on the
choice of bmin' Drastic discrepancies between theory and ex-
periment for these lines can only result from the inherent
uncertainty associated with the Anderson cut-off method, or
possibly with the use of second-order perturbation theory to
describe the scattering processes.

(b) I1 order to ascertain the effect of reducing b to a

min
value of l.SOZ, it would be useful to make a number of high
resolution measurements of widths for transitions involving
intermediate J values, e.g. J's in the range 9 <J < 13.
These lines, theoretically, will exhibit some distinct de-
pendence on whether one chooses bmin = 3.203 (the BK value),
or the choice bmin = l.SOR which is suggested from the mea-
surements of Eng at high J.

(c) It would be extremely useful to collect additional laser
measurements c¢f HZO pressure shifts. This is an area where
the difference between the ATC and QFT calculations can be

pronounced even at low J values. Such measurements could

help t» differentiate the merits of the two approaches.
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If satisfactory resolutions of some of the above uncer-
tainties can be obtained, it would appear that the theory
presented here can be applied with rather good confidence to
widths of HZO-N2 over a wide range of J values. The calcula-
tion of shifts is more delicate, and the success of the pres-
ent calculations appears to be limited to low or intermediate
J transitions. Additional experimental results should delin-

eate the range of validity.
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APPENDIX A
SECOND-ORDER PRESSURE SHIFTS IN THE ANDERSON FORMALISM

Let us begin with the integral equation for the T matrix
in Anderson's theory

i SN
Phe) 5.3 ~ G f OB (et BT aet (A1)

ﬁc(tt) - eiﬂot'/'ﬁ Hc(t,) e-iHOt'/‘H 3 (A2)

where Hy is the unperturbed Hamiltonian, and Hc(t') is the
collision Hamiltonian with the classical-path time-dependence.
Iteration of (Al) leads to the series given in eqn (49) of

18

Anderson's original paper. Similarly,

. €
T =)t 210 (h [ omen, H_(t') dt'
- 00
(A3)
Iteration of eqn (Al), (A3) to second order yields

TomiEm BGE) = T & T € T 5% o . .
aipe 0 1 2 L

i Tim T(t) "= 2. + 5% « T;‘ e = (A4)

i 0  §
with
g it TP
Tg Ty’ =15
T, = - T;‘ z - iP , (AS5)

where (in Anderson's notation)

P=i [ H(th) ar', (A6)
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Y T e

W i?j at' [ ae" B(e") T te™ (A7)
C'

;i l-2-1 grt [ o B o) B (er) (A8)
-+ —-00 ~®

If the non-commutivity of ﬁé(t'), ﬁé(t") in eqn (A7), (A8)
is ignored, then by a standard trick of interchanging the
names of the dummy variables of integration, one obtains the

result of eqgn (51) in Anierson's paper, i.e.
T :T-l:——on (Ag)
Now, for the calculatior. of the cross section, one re-

quires diagonal matrix elemerts of T2. From Anderson's ap-

proximation (A9) one then finds

<n|T2|n> = - % <n|P?|n>
A tyem?
= =~ 5} <n|Plat>ent|elas
n'
= -3 1 l<«lpnt>|?
nl
- _]_-' 1._ > iw t ] 2
: -3 E' = {m dt e “nn' <n|Hc(t)|n >|
(A1Q)
where By T 0 = Wy = (E(O) - (0))/h. If we define the
Fourier transform
© St
Hotw) = [ at ™ u (v) , (A11)
-0

then eqn (Al10) may be written

<n|T,|n>= - 1 I £ <n|H Cw, _)|n'>|2 . (A12)
n
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The correct treatment of eqn (A7), on the other hand,

yields
, toie Lt e, tm
<n|T,|n> = } (- ——) f dat' [ e™"mn'" e "n'n
n h? - -
* <n|H_(t£")|n'><n'|[H_(t")|n> . (A13)

The trick now is to introduce the inverse Fourier transform

H_(t) = dw H_(w) o~ lut (ALb)

N
a
| — 8

o0

Making use of this in eqn (Al13) gives

< |T,|n> = - sabil FTp i [ <afH (e {n'><n'{H_(o")|n>
(2m4)? n' -w -

o h +! .
- ' - " "
¢ | at el(wnn‘ w')t [ at" e l(mnn'+m‘)t

(A1l5)
- 00 - 00

The integration over t" yields (36)

t : 3 "y 4n

R e~1(0, tutt

- 00

Lk " '
= e 1(wnn,+w )t [né(w +w") 4+ ——2———w] . (Ale)
“Ant

The t' integration then simply gives

T -i(w'+u")t!

J at' e = 2mé(w'+u") . (A17)

- 00

When the integration over w" is eliminated, we obtain (with

w' > w)
<n|T,[n> = . e %— Z | dw <n|H (w)|n'><n'|H_(-w)|n>
c c
H? n' -oe
a Pr
e [(m6(w__y=w) + i ———1 ., (A18)
nn' W =0
Sd
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Since Hc(t) is Hermitian,
* ,
<n'|H (-w)|n> = <n[H_(w)|n'>" , (A19) 3

so that

1 1
<a|Ty)|n> = - 3 Z' |i <n|Hc(wnn.)|n‘>|2
n

| o]
| i Pr dw 1
+ % 2' = / T lH <n|HC(w)|n'>]2 : (A20)
n - nn

- *
A little considerction shows that <n|T21In> = <n|T,|n>
We now note that the real part of eqn (A20) is identical

to Anderson's result of eqn (Al2), and this gives the usual

contribution of Sz(b) to the line width. The imaginary

outer
term in eqn (A20) yields the second-order shift contribution,
and this term is precisely the Hilbert transform of the width
function. Subsequent reduction of the cross section using

the standard ATC methods then leads directly to egqn (13a) for

(1)
Sif,J2(b)'
Finally, to obtain
(1) e (I
Sif.g.(Pg) = = ] 2bdb sif.g.®) > (A21)
2 B b 2
0 "0
we require integrals of the form
00 b =
¥igdp SRR Eg y | (A22)
2 n 1
b0 b0 b

where ki = b Awi/v. Since

Pr 7 £(k")dk'

il el 2 Rl o e
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we need

L 7 2bdb Pr 7 £0k)dk! s
b

bAw. °
v

We let k' = bw'/v where w' is the new variable of integration,

and then reverse the orders of integration. This gives

Pr % dw' 2 7 bdb
I == [ S5— [ f(bu'/v) =2
B ceWT-bu, 2 ) B2
0 "0
1 Pr dw' n-2 7 bdb
ol 1R [ m'-Xm 2b, / — f(bw'/v) . (A24)
bU @ 1 b0 b

Next, we let b = kv/w' and obtain

. X Pr P dw' n-2 7 kdk
I = ;ﬁ - f prs 7 Ty 2k0 j ~ f(k) , (A25)
R 4 Koo

where ko = bom'/v. From eqn (15a), this is just

oo
= NETR dw'
Eim o = {w mE Flky) . (A26)
a

o

Finally, multipl/ing the numerator and denominator of eqn

(AZ6) by bO/V’ yields

3 pp dk P(ko) : F(kio)
I ==~=/] z s (A27)
R b
0 0
where kiO = bkoi/v. This analysis immediately yields eqn

(13b) of Sec. 2.
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AP?ENDIX B
HALF WIDTHS FOR MEASURED N, (OR AIR) BROADENED H,0 TRANSITIONS
The following lines show applicable values for the suc-

ceeding table. Common parameters: T = 297°K, d; = 1.85 x 107'°

esu-cm (ground state), d, = 1.82 x 10 !® esu-cm (v, state).
1 2

Anderson Theory: Q, = 3.00 x 10"2¢ esu-cm?. QFT I: Q,
4.61 x 1072% esu-cm?, « = (10W)/% = 2.36749. QFT II: e :
3.04 x 10°2% esu-cm?, @ = 2.79. Half widths in cm”~}/atm. ﬂ
( ) = Results of Benedict and Kaplan at 300°K; for Ref. (16),

theoretical values as quoted from Gates, et. al;(37)

rot =

pure rotational transition.
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GROUP Bl

Lower - Upper (J, K, » Kc)

Transition ATC QFT I QFT II Experiment & Reference
5,2,3 =+ 6,1,6 vot, 0.10046 |0.10045 | 0.10050 |(calibration line)
(0.030) 0.087 (Air, 318°K), Ref. (2)
0.104 (N,, 300°K), Ref. (3)
I 2,20 > 3 F 3 rat, 0.10683 |0.10610 | 0.10629 |0.095 (N2), Ref. (4)
(0.096) 0.111 (NZ)’ Ref. (95)
0.111 (Nz), Ref. (6)
3,2, > B, ¥4 vpot. 0.10558 | 0.10379 | 0.10443 | 0.095 (Air), Ref. (7)
(0.095)
k5@ 2 25200 ok 0.11354 }0.10644 } 0,108u45 (0.18 (N2)’ Ref. (8)
i (0.102)
ds251 > K372 rot. 0.09662 j0.09555 | 0.09591 |0.12 (N2), Ref. (8)
(0.087)
1 4,2,2 » 5,3,3 rot. {0.09919 |0.09792 | 0.09836 |{0.13 (N2)’ Ref. (8)
(0.089)
53353 * 646,50 rots 0.07348 |[0.07063 | 0.07148 | 0.08 (Air), Ref. (9)
(0.066)
55332 + 6461 Pot. 0.08084 [0.07905 | 0.07984 | 0.09 (Air), Ref. (9)
(0.073)
6,3,4 + 7,6,1 rot. 0.07225 | 0.06982 | 0.207043 {0.07 (Air), Ref. (9)
(0.065)
653,3 * 7,652 prot. 0.08551 [0.08378 | 0.08464 | 0.07 (Air), Ref. (9)
(0.077)
632595 * 755,22 POt. 0.07382 | 0.07050 [ 0.07132 | 0.08 (Air), Ref. (9)
(0.067)
6,1,6 » 7,4,3 rot. | 0.08374 | 0.08052 | 0.08137 | 0.10 (Air), Ref. (9)
(0.076)
753535 * 856,2 rot. 0.06973 | 0.06721 | 0.06772 | 0.07 (Air), Ref. (9)
(0.063)
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GROUP Bl

(Continued)

Transition ATC QFT I LOry i1 Experiment & Reference

7,3,4 » 8,6,3 rot. | G.08920 | 0.08811 | 0.08865 | 0.09 (Air), Ref. (8)
(0.080)

7,2,6 - 8,5,3 rot. | 0.06865 | 0.06408 | 0.06551 | 0.07 (Air), Ref. (9)
(0.062)

7,1,7 - 8,4,4 rot, | 0.08412 | 0.07951 {0.08119 | 0.08 (Air), Ref. (9)
(0.076)

8,2,6 - 9,5,5 rot. | 0.08356 | 0.07970 | 0.08081 | 0.08 (Air), Ref. (9)
(0.075)

5,148 + 62,8 © 0.10178 | 0.09963 | 0.10023 | 0.095 (N,), Ref. (10)

2 2

(0.093)

55352 * 64,3 v, 0.08669 | 0.08498 | 0.08576 [ 0.103 (N2), Ref. (10)
(0.080)

8,355 = S 4.6 v2 0.09206 | 0.0899¢ | 0.09074 | 0.081 (N2)’ Refs. (13), (14)
(0.084) 0.073 (Air), Ref. (1u)

9536 = 10,4.7 Vs, 0.08747 | 0.08157 | 0.08362 | 0.089 (Nz), Ref. (14)

0.081 (Air), Ref. (1u)

Byl yo = L2 5 v2 0.09293 | J.08837 | 0.08994 | 0.092 (N2), Refs. (13), (14)
(0.086) 0.085 (Air), Ref. (14)

Oslis2 * 7,5,3 v2 0.07155| 0.06912 | 0.06986 | 0.053 (Air), Refs. (13), (1u4)
(0.066)

B sd o T 3557 v, 0.06757 | 0.06483 | 0.06558 | 0.053 (Air), Refs. (13), (14)
(0.06:)

Syel * B:5:7 v2 0.065.2 | 0.06272 | 0.06350 | 0.063 (Air), Ref. (13)
(0.060)

3852 + 65551 v, 0.06391 ( 0.06154 | 0.06214 | 0.058 (Air), Ref. (13)
(0.059)

S5s045 > 64,3,4 v, 0.08628 | 0.08048 | 0.08233 | 0.098 (NZ)’ Ref. (1u4)
(0.080) 0.088 (Air), Ref. (1u)

31,2 » 4,4,1 v 0.09264 | 0.08698 | 0.08873 | 0.096 (N,), Ref. (14)

2 | (0.085) -
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GROUP Bl (Continued)

Transition ATC QFT I QFT II Experiment & Reference

4,2,3 » 4,1,4 2v, | 0.09941 | 0.09466 | 0.09605 | 0.096 (Air), Ref. (16)
2 | (0.091)

33252 > 3,),3 2V 0.10401 | 0.10057 {0.1019% | 0.083 (Air), Ref. (16)

2 1 (0.094)

2yky2 1007 2v2 0.11723 | 0.10965 [ 0.11186 | 0.101 (Air), Ref. (16)

(0.104)

3,053 = 2,12 2V 0.11051 0.10763 0.10854 0.101 (Air), Ref. (16)
2 | (0.099)

23210 > 2,852 2V 0.10597 0.10288 0.10387 0.099 (Aiﬁ), Ref. (16)
2 1 (0.096)

i 85350 = 3,272,101 2V 0.09499 | 0.09317 | 0.09363 | 0.097 (Air), Ref. (16)

2 (0.084)

1,151 = 6,8;0 29 0.11084% | 0.10263 | 0.10529 | 0.104 (Air), Ref. (16)
G (0.100)

1510 =+ 1Ls0,1 2v 0.12340 [ 0.11298 [ 0.11596 | 0.109 (Air), Ref. (16)

2 1 (0.108)

85032 > 23251 2V 0.10559 | 0.10311 | 0.10370 | 0.095 (Air), Ref. (16)

= (0.095)

£50,1 = 11,0 2V 0.12340 | 0.11298 0.11596 | 0.110 (Air), Ref. (16)
2 | ¢0.111)

0,0,0 + 1,1,1 2v 0.11084% | 0.10263 | 0.10529 | 0.107 (Air), Ref. (16)

2 1 (0.100)
3,0,3 > 3,1,2 2v, |0.11031 | 0.10670 | 0.10773 | 0.105 (Air), Ref. (16)
(0.099)
2,2,1 > 3,1,2 2v, |0.10559 | 0.10311 | 0.10370 | 0.102 (Air), Ref. (16)
(0.095)
2,1,2 » 3,0,3 2v, |[0.11051 | 0.10763 [ 0.10854 | 0.104 (Air), Ref. (16)
(0.099)
f :
4,0,4 > 4,1,3 2v, | 0.10830 [ 0.10568 | 0.10648 [ 0.108 (Air), Ref. (16)

(0.097)
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GROUP Bl (Continued)

Transition ATC QFT I QFT II Experiment & Reference

gl a2 = ds AL 2v2 0.10498 |1 0.09989 | 0.10125 }0.098 (Air), Ref. (16)
(0.095)

22270 2v2 0.10823 | 0.10344 | 0.10463 | 0.097 (Air), Ref. (16)
(0.093)

Sl 5. 2.3 2\)2 0.10523 | 0.10284 } 0.10348 | 0.105 (Air), Ref. (16)
‘ (0.095)

|2,0,2 SN 3 2v2 0.11379 | 0.10869 | 0.11016 | 0.101 (Air), Ref. (16)
‘ (0.103)

3313 = W, 0.4 2v2 0.10675 [ 0.10268 | 0.10401 | 0.092 (Air), Ref. (16)
(0.096)

el BRSSP S 2v2 0.10597 | 0.10288 | 0.10387 | 0.105 (Air), Ref. (16)
(0.095)

55805 X 5Tk 2v2 0.10153 {(¢.09908 | 0.09981 | 0.097 (Air), Ref. (16)
! (0.091)

L

Bigks s E 6571 2v2 0.10258 | 0.09998 | 0.10072 | 0.094 (Air), Ref. (16)
(0.092)

Felis 3 = Wl ol Zv? 0.10854 §0.10590 1} 0.10668 | 0.099 (Air), Ref. (16)
E (0.098)

8,6;3 + 7,4, Vj 0.06601 | 0.06278 | 0.06365 | 0.067 (Air), Ref. (16)
(0.060)

sl >+ 5500 2v2 0.09730 | 0.09076 | 0.09283 | 0.089 (Air), Ref. (16)
(0.088)

byl,4% » 4,2,3 2v2 0.09941 | 0.09466 | 0.09605 | 0.095 (Air), Ref. (1l6)
(0.090)

s 08l 551 35 sz 0.09996 | 0.09627 | 0.09734 | 0.085 (Air), Ref. (16)
(0.090)

7,156 » 7,2, 2v, | 0.09479 | 0.09043 | 0.09191 | 0.082 (Air), Ref. (16)
(0.085)

43253 + 351,04 2v2 0.10215 ) 0.10003 | 0.10062 | 0.089 (Air), Ref. (16)

(0.092)
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GROUP Bl (Continued)
Transition ATC OFT T OFT "L Experiment & Reference
7,2,5 + 7,3,4 2v, | 0.10288 | 0,10007 | 0.10091 | 0.088 (Air), Ref. (16)
(0.093)
Ry2,4 - 2v, 0.10282 | 0.09954 | 0.10070 | 0.086 (16)
(0.093)
7.641 & v, 0.06341 | 0.06649 | 0.06739 | 0.069 (16)
(0.059)
Fslsl =+ 2v, 0.10716 | 0.10260 | 0.10407 | 0.101 (16)
(0.095)
| 9,4,5 » v, 0.08830 | 0.08403 [ 0.08565 | 0.080 (16)
i (0.077)
=
‘5,2,1 - ¢v, |0.09499 }0.09317 | 0.09363 | 0.091 (186)
8 (0.085)
4,2,3 + 2v, 0.09208 | 0.088¢”> | 0.08985 | 0.084 (16)
(0.083)
75651 - vy 0.05273 | 0.04953 | 0.05041 | 0.051 (16)
(0.050)
r——
6,2,5 2v, | 0.08302 | 0.07957 | 0.08052 | 0.071 (16)
(0.075)
8,5,4 » v, 0.07830 | 0.07595 | 0.07668 | 0.073 (16)
(0.069)
=
4,1,3 » 2v, | 0.10311 {0.10123 | 0.10177 | 0.090 (16)
(0.093)
Boylhyb » vy 0.07150 | 0.06758 | 0.06867 | 0.081 (16)
(0.069)
75552 + v, 0.06931 | 0.06538 | 0.06638 | 0.069 (16)
$ (0.064%)
745,3 » v, 0.07320 | 0.07001 | 0.07095 | 0.072 (16)
(0.066)
7,3,4 =+ 2v, | 0.09746 | 0.09636 | 0.09675 | 0.083 (15)
(0.088)
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GROUP BL (Continued)

Transition ATC QFT I QFT II Experiment & Reference
] (ST S e S 2v2 0.08t/76 | 0.08439 | 0.08506 | 0.089 (Air), Ref. (16)
& (0.0"3)
f ToB,0 > 8,2,5 ¥ 0.0°787 | 0.09645 | 0.09718 | 0.082 (Air), Ref. (16)
‘ (0.484)
500 Bl S e B Vg 0.08407 1 0.08172 | 0.08274 | 0.076 (Air), Ref. (16)
i : (0.070)
!5,3,2 s G 2v2 0.08768 | 0.08635 | 0.08688 | 0.084 (Air), Ref. (16)
(0.079)
I3 + 653,4 vy 0.08578 | 0.082b8 | 0.08363 | 0.1'77 (Air), Ref. (16)
(0.078)
8,8,5 > 7,8.% v 0.09431 ! 0.09338 | 0.09407 | 0.090 (Air), Ref. (16)
(0.08))
Al P4 M e AR 2L sz 0.09352 | U.09L3% | 0.09201 | 0.G83 (Air), Ref. (16)
(0.084)
6,453 > 6,3,4 2v, | 0.0'944 0.07530 | 0.07650 | 0.071 (Air), Ref. (16)
(0.0L72)
4 GigiZ st > USRS vy 0.10341 [ 0.10215 | 0.10256 | 0.097 (Air), Ref. (16)

(0.087)

Tl » 6,3,3 N 0.09280 | 0.09113 | 0.09197 | 0.086 (Air), Ref. (1)

(0.1079)
;5,5,0 * .31 v, 0.07724 | 0.07506 | 0.07594 | 0.0677 (Air), Ref. (16)
(0.065)
Bylty3 = 5,352 v, 0.08912 | 0.08791 | 0.08845 | 0.083 (Air), Ref. (16)
(0.077) ’

T5235 > 65056 Y 0.09552 | 0.09165 | 0.09312 | 0.084 (Air), Ref. (16)

(0.079)




GROUP B2

Trinsition ATC QR QFT II Experiment & Reference
9,1,9 + 10,2,8,rot. (0.054) 0.07 (Air), Ref. (9)
b i, = 3.20A 0.05816 | 0.05371 | 0.05493
2. 50 0.05684 | 0.04978 | 0.05196
1.50 0.05684 | 0.04914% | 0.05173
9.2,7 + 10,5,6,rot. (0.067) 0.10 (Air), Ref. (9)
Do i, = 3-20A 0.07350 | 0.06902 | 0.07027
2.50 0.07335 | 0.06749 | 0.066939Y
1.50 0.07335 | 0.06742 | 0.0693¢%
9,1.,8 + 10.4.7 rot. (0.053) 0.10 (Air), Ref. (9)
b i, = 3-20A 0.05611 | 0.05115 ] 0.05237
2.50 0.05453 | 0.04683 | 0.04896
1.50 0.05453 | 0.04613 | 0.04870
10,1,10 *» 11,2,9 rot. | (0.0u4k4) 0.08 (Air), 'eof. (9)
boso = 3.20 (.04661 | C 04304 | 0.04395
2.50 .04291 | ¢.03623 | 0.03817
1.50 0.04273 | C.03410 | 0.03700
10,1,9 -~ 11,4,8 rot. (0.046) 0.05 (Air), Ref. (9)
By = 3.208 0.04863 | 0.04442 | 0.04545
2.50 0.04557 | 0.03827 | 0.04024
1.50 0.04550 { 0.03669 | 0.0394Y
10,2,8 + 11,5,7 rot. (0.057) 0.08 (Air), Ref. (9)
by ° 3.20R 0.06155 | 0.05633 | 0.08772
2.50 0.06048 | 0.05258 | 0.0'499
1.50 0.06048 | 0.05203 | 0.05483
10,2,9 » 11,3,8 rot. (0.064) 0.07 (Air), Ref. (9)
boin ° 3.208 0.07062 | 0.06552 | 0.06701
2.50 0.07051 | C.06481 | 0.06658
1.50 0.070°1 | 0.06481 | 0.06658
11,1,10 + 12,4,¢ rot. | (0.041) 0.07 (Air), Ref. (9)
by = 1,208 0.04331 | 0.04015 | 0.04090
.50 0.03885 | 0.03279 | 0.03435
1.50 0.03856 | 0.03037 | 0.03290
11,2,9 » 12,5,8 rot. (0.049) 0.07 (Air), Ref. (9)
bosy ® 3.20R8 0.05083 | 0.04577 | 0.04713
2.50 0.04790 | 0.03937 | 0.04188
1.50 0.04784 | 0.03759

0.04103
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GROIP B2 (Continued)
Tran: tion ATC QET I QOEPR LT Experiment & Reference
12,3,10 - 13,4,9 rot. | (0.063) 0.05 (Air), Ref. (9)

boin = 3-20 0.06928 | 0.06286 | 0.06488
2.50 0.06913 | 0.06197 | 0.06423
1.50 0.06913 { 0.06197 | 0.0(423

10,2,8 » 11,3 9 v, (0.054%) 0.0435 (Air), Ref. (15)
3 3.21 & 0.05991 { 0.35668 | 0.0,749
2.5¢ 0.05952 [ 0.05520 | 0.05635
1,50 0.05952 | 0.05518 | 0.05635

11,1,10 » 10,2,9 v, (0.014) ! 0.035 (Air), Ref. (16)
by . = 3.208 0.05320 | 0.063721 | 0.03764
2.51 0.03423 | 0.03030 | 0.03131
1.5¢( 0.03422 | 0.02990 | 0.03110

857,1 > 746,2 vy (0.042) 0.037 (Air), Ref. (16)
bosn = 3.208 0.04430 | 0.04153 | 0.04219
2.50 0.04378 { 0.03982 | 0.04109
1., 50 0.04378 | 0.03982 | 0.04109

6,1,6 + 7,0,7 2v, (0.063) 0.059 (Air), Ref. (16)
boin = 3.208 0.06836 | 0.06127 | 0.0 325
: 2.50 , 0.06786 | 0.05912 | 0.0t 81
1.50 0.06786 | 0.05912 | 0.06:81

9,0,9 »~ 8.1,8 2v, (0.044) 0.038 (Air), Ref. (16)
boiy, = 320 0.04567 | 0.04107 | 0.04229
: 2.50 0.04151 | 0.03344 | 0.03575
1.50 0.041°7 | 0.03183 | 0.03474

8,2,7 » 9.1,8 2v, €0.05 ) n.045 (Air), Ref. (16)
boi, = 3.208 .054 3| 0.04943 | 0.05088
gt ) 0.05373 | 0.04762 | 0.04957
1.50 0.05373 | 0.04762 | 0.04957
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GROUP B3
Transition ALC (Gh=e OFT IT Experiment & Reference
S5 05K > 16,1 16 v, 00072 (N,); Refs. (12),
bmin = 3.203 { 0.053180 1 0.08:78 | 0.03179 | (13), (1u3
2.50 0.01954 0.01)41 | 0.01943 | 0.0070 (Air), Ref. (1u)
2200 001307 001 H8INas 001256 (| 0.0075 (Air), Ref. (I1)
Is 75 0.01104 | 0.0C 165 | 0.00985
1L 60 U.01043 | 0.00:19 | 0.00854
LS50 0.01029 ) 9.00/35 | 0.00785
1.40 0.01028 | 0.00563 { 0.00734
ESSE s 1658516 v2 Exp. results same as above
bmin = 3.20ﬁ 003181 0. 02179 [ 0s031L79
20450 0.01954 | 0.0 342 | 0.0194u
2 .00 0.01310 { @.0 248 | 0.01253
L o2S 0., 01 1E07 | 0.0L 967 | 0.0098 3
1.60 OO0 0010 3213 1IN0 0085 3
L. 50 G- 003 INBSOE g G G0 0TS0
1.40 0.01032 '0.0C;68 { GC.007u0
MR S s Vo 0011 CAip), Ref. (12)
bmin = 3.’0% Q@387 100380 0. 03182
; 2o i) 0. 0L977 | 0. 0L9487 | 0.0% 952
2.0 0.01378 | 0.01263 | 0.0 282
LTS G.0122% 6100992 0 01032
bl 0.01127 | 0.00359 | 0.00920
150 0.011l¢4 | 0.00785 | 0.00867
1.40 8.01L18% | 0.00726 | D.00833
1L S e SIS P Vo Exp. results same as above
bmin = 3.20ﬁ 0. 3186 0.03180 | 0.03181
2. 50 0. 1975 { 0,01946 | 0.01951
2.00 g L3741 001260 | 0501278
T .75 0.¢1215 | 0.00986 | 0.01025%
1.60 8.0118% | 0.00860 | 0,00912
1. 50 0.0: 178 | 0500775 | 0.00858
1.1+0 0.0i178 | 0.00714 | 0.00823
EZy253 Lk = L3 L 3E2 vV 0.0185 (Np), Ref. (1)
Bt = 3.20i ‘ 003341 0.08278 § 0.03292 | 00171 CAir), Refs. (13},
2.50 0.02394 0.02203 | 0.02249 | (14)
2.00 0.02220 ! 0,01 101 | 0.01990 | 0.0L55 (Air), ReE. (1l)
715 0.02220 | 0.01L%00 | 0.01990
1.60 0.0 220 { 0.01:00 | 0.01990
1.50 0.0 220 | 0.01t00 | 0.01990
1.40 0.0 220 i0.0lSOO 0.01990
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GROUP B3 (Continued)

Tran:-ition ATC QRE T QFT IL Experiment & Reference
12,335 + 13,2 0.01%5 (Air), Ref. (11)
b . = 3. 20% 0.03334 | 0.03278 {0.03290 | 0.0170 (Air), Ref. (13)
. 2.50 0.02344 | 0.02181 | 0.02219
2.00 0.02076 | 0.01768 | 0.01835
%75 0.02058 | ((.01699 | 0.01779
1.60 0.02058 | 1.01687 | 0.01779
1.50 0.02068 | 0.01686 | 0.01779
1.40 0.02068 | 0.01686 | 0.01779
"15,2,14% » 16,1,15 0.0096 (N,), Ref. (1)
B .= 3.208 0.03194% | 0.03190 | 0.03191 | €.0091 (Afr), Ref. (1u)
i 2.50 0.02000 | 0.01980 { 0.01984 | 0.0110 (Air), Ref. (13)
2.00 0.01437 | 0.01265 | 0.01377
1.75 0.01316 | 0.01184 | 0.012¢(8
1.60 | 0.01299 | 0.01122 | 0.011¢2
1.50 0.01299 | 0.01098 | 0.01136
! 1.40 0.01299 | 0.01086 | 0.01131
LSk il > 162 S Exp. results same as above
| b i = 3.208 0.03186 | 0.03182 { 0.03182
2.50 0.01974 | 0.01952 | 0.01956
2.00 0.01362 | 0.01279 | 0.01294
1475 0.01185 | 0.01019 | 0.01049
1.60 0.01136 | 0.00895 | 0.00941
1.50 0.01126 | 0.00828 | 0.00889
b 0.011251{ 0.00775 | 0.00854
13,060,313 + 12,1 0.0183 (Air), Ref. (16)
boin ° 3.20 1.03247 { 0.03207 | 0.03216
2.50 0.02133 ] 0.02003 | 0.02031
2.00 ¢.01701 | €.01375 | 0.01u4lY
1.75 (.0l644 | 0.01156 | 0.01268
1.60 0.01643 | 0.01064 | 0.01210
1.50 0.01643 | 0.01023 | 0.01192
L.40 0.01643 | 0.00997 | 0.01187
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